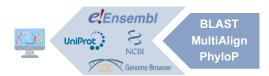


Impact of the existence of isoforms on the assessment of the evolutionary conservation of amino acid residues in the RAD51C protein: Implications for the classification of genetic variants regarding pathogenicity

Thamiris Matias Alves¹, Maria Raquel Santos Carvalho1,²

1 Programa de Pós-Graduação em Genética da UFMG; 2 Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brasil


INTRODUCTION

The RAD51C protein participates in DNA repair by homologous recombination. Mutations in RAD51C have been associated with a higher risk of breast and/or ovarian cancer. The depth of evolutionary conservation of the mutated amino acid residue is an important criterion in classifying genetic variants for pathogenicity. Still, its estimation could be affected by the existence of isoforms in humans and other species.

OBJECTIVES

To evaluate the impact of RAD51C protein isoforms in humans and other species on the classification process of genetic variants regarding pathogenicity.

METHODOLOGY

RESULTS AND DISCUSSION

In humans, seven isoforms of the RAD51C protein have been identified, and the canonical one has 376 residues.

Figure 1 - Human RAD15C protein isoforms


The fraction of highly conserved residues among the 376 of the canonical isoform varied according to the software used: ConSurf (60), PhyloP/UCSC Genome Browser (176), and Clustal/MEGA X (72).

Figure 2 - Evolutionary conservation by residue of RAD51C

Analysis with a cluster of 32 sequences showed that from residue 10 on of the canonical human isoform, all primate sequences identified in this cluster were highly conserved.

Figure 3 - Multiple alignment of human RAD51C protein

CONCLUSION

The existence of isoforms hinders the analysis of evolutionary conservation and the estimation of the depth of evolutionary conservation of several residues, which affects the classification of genetic variants in RAD51C regarding pathogenicity.

REFERENCES

Manjit K. Dosanjh, David W. Collins, David Schild, Wufang Fan, Gregory G. Lennon, Joanna S. Albala, Zhiyuan Shen, Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes, Nucleic Acids Research, Volume 26, Issue 5, 1 March 1998, Pages 1179– 1184,

Xin Yang, Honglin Song, Goska Leslie, et al. Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D, JNCI: Journal of the National Cancer Institute, Volume 112, Issue 12, December 2020, Pages 1242–1250, https://doi.org/10.1093/jnci/djaa030

