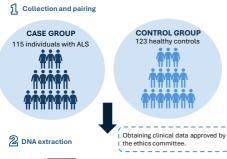


IS THE ANGIOTENSIN-CONVERTING ENZYME (ACE1) I/D POLYMORPHISM INVOLVED IN ALS RISK? A PRELIMINARY ANALYSIS

Dhiogo da Cruz Pereira Bento ^{1,4}; **Julia Bispo Campos** ¹; Diolina Gonçalves da Silva ^{1,2}; Stela Silva Nolêto Leite de Carvalho ^{1,2}; Leandro do Prado Assunção ²; Rodrigo da Silva Santos ^{1,2,4}; Angela Adamski da Silva Reis ^{1,2,3,4}

*Neurogeneiros Research Center - Neurogene Institute of Biological Sciences (ICBII): Enderal University of Coiás (IEG):


1 Neurogenetics Research Center - NeuroGene, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG);
2 Department of Biochemistry and Molecular Biology (DBBM), Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG);
3 Postgraduate Program in Genetics and Molecular Biology (PPGBM), Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG);
4 Postgraduate Program in Health Sciences (PPGCS), Faculty of Medicine, Federal University of Goiás (UFG);
5 Bachelor 5 Degree in Biomedicine, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG);

Corresponding author: Angela Adamski da Silva Reis – angela@ufg.br Rodrigo da Silva Santos – rdsssantos@ufg.br

INTRODUCTION

lateral sclerosis (ALS) is Amvotrophic neurodegenerative disease marked by the progressive loss of upper and lower motor neurons, leading to muscle weakness, atrophy, and paralysis. Its causes are not fully understood, but genetic factors may be associated. Angiotensin-Converting Enzyme (ACE), part of the Renin-Angiotensin-Aldosterone System (RAAS) is present in brain tissue. ACE produces Angiotensin II activates inflammatory pathways through the ATR1 receptor. A specific genetic variant in the ACE gene (insertion/deletion) influences genic expression, where the D allele is linked to higher enzyme levels and increased neuroinflammation, potentially contributing to ALS development. This case-control study aimed to evaluate the impact of the insertion/deletion (I/D) polymorphism in the ACE gene on the risk of developing ALS.

METHODOLOGY

DNA was extracted from peripheral blood samples and subsequently quantified in the Nanodrop®.

3 Genotyping and statistical analysis

Genotyping was performed using Real-Time PCR (QuantStudio 6 Pro) by SYBR Green®.

Logistic regression analysis was used to **predict disease risk**, with a significance threshold of **p < 0.05**.

Application of dominant, recessive, codominant, and overdominant inheritance models.

JUFFORT

RESULTS AND DISCUSSION

Table 1. Genotypic and allele frequencies of the investigated polymorphisms and the association between ALS and control group, using models of inheritance.

Model	Genotype	DR	DMT2	OR	95% CI	р
Codominant	II .	56	34		Reference	
	ID	54	67	0.48	(0,280 to 0,854)	0.011*
	DD	5	22	0.13	(0,047 to 0,398)	0.0003*
	II	56	34		Reference	
Dominant	ID + DD	59	89	0.40	(0,234 to 0,068)	0.0009*
Recessive	II+ID	110	101		Reference	
	DD	5	22	0.20	(0,076 to 0,571)	0.002*
Overdominant	II+DD	61	56		Reference	
	ID	54	22	2.25	(1,211 to 4,164)	0.009*
		Alle	lic Frequer	ncies		
Alleles	Case	Control	X ²	DF	р	
1	0,73	0.54				
			0.0778	1	0. 78	
D	0.27	0.46				

Analysis by multiple logistic regression to obtain adjustedoddsratio values (OR) and confidence intervals (95% CI). *Significant difference between groups (p,0.05).

Our findings support the possibility of a genetic influence of the ACE I/D polymorphism on ALS susceptibility, particularly under the overdominant model. Although the observed did reach conventional association not significance, the 2.25-fold increased risk in heterozygous individuals may indicate a biological trend worth exploring. This aligns with the notion that intermediate expression levels of ACE, potentially found in heterozygotes, could exacerbate inflammatory pathways implicated in ALS pathogenesis. Due to the complexity of ALS, findings should be interpreted cautiously. The lack of strong genetic associations highlights the need for further research with larger samples and functional analyses to better understand ACE's potential role in the disease.

CONCLUSION

Although no significant associations were observed in the codominant, dominant, and recessive models, the overdominant model revealed a borderline association between the ACE I/D polymorphism and ALS risk. These preliminary findings suggest that heterozygous individuals may have increased susceptibility to ALS, supporting the need for further investigation. Functional studies are essential to clarify ACE's potential role in ALS pathogenesis and to explore its relevance as a biomarker or therapeutic target.

REFERENCES

