

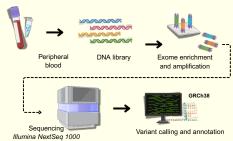
CBGM 2025

Multifactorial susceptibility to Familial Multiple Myeloma: Genomic analysis of a Brazilian family with emphasis on patterns of variants in CDKN2B-AS1 and HOGA1

Bruna Terezinha Magnabosco Ferreira da Cruz¹; Marco Antonio Campanário Sampaio², Jaqueline Carvalho de Oliveira¹: Aparecido Divino da Cruz²; Juliana Dal-Ri Lindenau⁴; Daniel Pacheco Bruschi¹

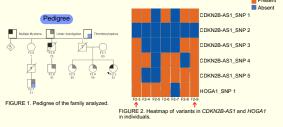
1 Federal University of Paraná; ²Carlos Chagas Institute (Fiocruz Paraná); ³Pontifical Catholic University of Goiás; ⁴Federal University of Santa Catarina

INTRODUCTION

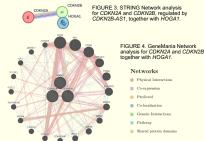

Multiple myeloma (MM) is a rare plasma cell neoplasm that accounts for 1% of cancers and 10% of hematologic malignancies. Although traditionally described as sporadic, evidence of familial aggregation is part of a growing discussion about the disease. The underlying hereditary susceptibility, however, remains largely unexplored, especially in Latin American society. Our study investigates the genomic landscape of familial MM in a Brazilian family, using whole exome sequencing (WES) to identify germline variants that may confer disease risk.

OBJECTIVES

To investigate germline variants in a Brazilian family with recurrent MM or related hematologic conditions, possibly associated with disease susceptibility, in order to compare the genetic basis of risk identified among affected and non-affected individuals.


METHODS

Seven samples (two affected, five unaffected) from one family with recurrent MM were analyzed by WES (Illumina NextSeq 1000). Bioinformatic analysis included read mapping, variant calling (Dragen 4.3.6), and annotation (ANNOVAR) aligned with ACMG. Variants were filtered by quality, allele frequency (Brazilian and global populations), and predicted impact. Candidate variants were cross-referenced with cancer susceptibility gene databases and evaluated for familial segregation and biological relevance.



RESULTS AND DISCUSSION

WES generated ~60,000 variants/sample. After our filtering pipeline, the two affected individuals (proband and uncle) shared a specific pattern of five risk variants in *CDKN2B-AS1*, together with one pathogenic polymorphism in *HOGA1*. Non-affected family members exhibited a variable subset of these SNPs, suggesting incomplete penetrance and variable expressivity. No direct physical interaction was found between them, but their co-occurrence points to a synergistic risk modulation as they converge on oncogenic pathways.

This suggests their role as **novel candidate genes for MM susceptibility**, pointing to a **multifactorial inheritance model**.

REFERENCES

1 Akkus, E., Tuncalı, T., Akın, H. Y., et al. (2023). Germline genetic variants in Turkish familial multiple myeloma/monoclonal gammopathy of undetermined significance cases. British Journal of Haematology, 204, 931-938.

https://doi.org/10.1111/bjh.19271; 2 Catalano, C., Paramasivam, N., Blocka, J., et al. (2021). Characterization of rare germline variants in familial multiple myeloma. Blood Cancer Journal, 11, 33. https://doi.org/10.1038/s41408-021-00422-6; 3 Pertesi, M., Went, M., Hansson, M., et al. (2020). Genetic predisposition for multiple myeloma. Leukemia, 34, 697-708. https://doi.org/10.1038/s41375-019-0703-6; 4 van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. The Lancet, 397(10272), 410-427. https://doi.org/10.1016/S0140-6736(21)00135-5

CONCLUSIONS

The identified variants may act synergistically to modulate penetrance and risk. Integrated investigations are needed to understand the etiology of MM. Our results reinforce the need for studies in admixed populations and the search for a broader spectrum of variants.

ACKNOWLEDGEMENTS

CONTACT

HIGHLIGHTS