
EVALUATION BETWEEN MTR 2756A>G POLYMORPHISM AND TYPE 2 DIABETES RISK: AN INTEGRATED APPROACH WITH MACHINE LEARNING

through essential biochemical processes involved in cellular metabolism. Methionine synthase (MTR) converts homocysteine (Hcy) into methionine (Met) using folate and vitamin B12, preventing its accumulation and reducing metabolic and vascular risks. Furthermore, folate regulates DNA methylation, influencing the expression of genes associated with insulin resistance (IR). Alterations in this cycle can impair metabolic functions, contributing to the development of T2DM. This study investigated the association of the single nucleotide polymorphism (SNP) in the MTR gene, rs1805087, with the risk of developing T2DM. METHODOL OGY

INTRODUCTION

Type 2 diabetes mellitus (T2DM) and the folate cycle are interconnected

RESULTS AND DISCUSSION

model

Results indicated that the SNP rs1805087 showed no association with T2DM risk across all inheritance models. Additionally, permutations tests revealed that the models RF, KNN and SVM identified age, gender, SNP, smoking and Alcohol comsumption as major predictors of T2DM. RF model proved to be the best model validated by na ROC curve of 0.99 but it was disconsidered due to suspicion of overfitting.

Table 1. Distribution on MTR genotypes in case and control groups under diferente inheritance models							
Model	Genotype	Diabetes m	ellitus 2 Yes	Odds (CI 95%)	p-value	AIC	віс
Codominant	AA	67(56.303%)	68(68%)	Ref	Ref		
Codominant	AG	47(39.496%)	29(29%)	0.608(0.34-1.073)	0.089	304.782	314.949
Codominant	GG	5(4.202%)	3(3%)	0.591(0.118-2.506)	0.484		
Dominant	AA	67(56.303%)	68(68%)	Ref	Ref	302.783	309.561
Dominant	AG + GG	52(43.697%)	32(32%)	0.606(0.346-1.052)	0.077		
Recessive	AA + AG	114(95.798%)	97(97%)	Ref	Ref	305.722	312.5
Recessive	GG	5(4.202%)	3(3%)	0.705(0.142-2.948)	0.638		
Overdominant	AA + GG	72(60.504%)	71(71%)	Ref	Ref	303.288	310.066
Overdominant	AG	47(39.496%)	29(29%)	0.626(0.352-1.099)	0.105		
Allele	A G	181 57	165 35	-	0.125	-	-
Allele	G	5/	30			-	

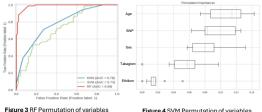
CI = Confidence interval AIC = Akaike information criteria; BIC = Bayesian information criteria; Odds ratio with 95% CI; significance level = 0.05; p-value < 0.05

Group (n) Genotype Observed Expected Allelic Allelic x2 (gl =1) p-value frequency A (%) G (%) Contro A/A 68,81 0,837 0,3602 (119)A/G 47 43.34

Table 2. Hardy-Weinberg equilibrium analysis for MTR genotypes in case and control group:

	GG	5	6,81					
	Α	181		0,7605				
				(76.05%)				
	G	35			0,2395			
					(23.95%)			
Case	AA	68	68,06			0,0018	0,9654	
(100)	A/G	29	28,84		_			
	G/G	3	3		_			
	Α	165		0,825				
				(82.5%)				
	G	35			0.175			

Tests used: x^2 = Chi-square; Chi-square calculated with 1 level of liberty; significance level = 0.05; p-value < 0.05 and Hardy-Weinberg equilibrium caculated using x^2 results.


Table 3. Training and test of ML models

	ML	Accuracy	Precision	Recall	
Train	KNN	0,720	0,736	0,728	•
Train	SVM	0,640	0,655	0,663	
Train	RF	0,931	0,954	0,913	
Test	KNN	0,591	0,667	0,667	
Test	SVM	0,568	0,653	0,629	
Test	RF	0,477	0,600	0,444	
4 - 000/ · M-4-i					

Training = 80%; Test = 20%; Metrics accessed were accuracy, precision and recall for model fitting.

Figure 1. ROC Curve and AUC

Figure 2 KNN Permutation of variables

re 4 SVM Permutation of variable

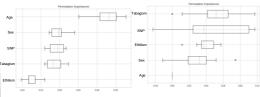


Table 4. Pattern prediction by ML models identifying gene-environment

Features	Codominant	Dominant	Recessive	Overdominan
Sex	0,279	0,283	1,000	0,186
Tabagism	0,009	0,068	0,041	0,386
Ethilism	0,220	0,158	0,916	0,258
HAS	0,575	1,000	0,735	0,898
RD	0,878	1,000	1,000	0,943
ND	0,443	0,387	0,916	0,570
NPP	0,248	0,212	0,892	0,360
PD	0,619	0,809	1,000	0,702
CD	0,684	1,000	0,916	1,000

HAS = Sistemic arterial hypertension; RD = Diabetic retinopathy; ND = Diabetic nephropathy; NPP = Diabetic peripheric neuropathy; PD = Diabetic feet; CD = Diabet cardiopathy; Inheritance models applied to ML with significance level = 0.05; p-value < 0.05.

CONCLUSION

In conclusion, the lack of association between rs1805807 and T2DM suggest that this SNP, alone, was not a determinant factor in the studied population. Conversely, the use of ML proved to be an effective approach in identifying patterns and predictors of T2DM, demonstrating that the combination of genetic and enviromental factos can significantly influence disease predisposition.

REFERENCES

Espaco livre para inserir QR codes para referências, suplementos (planilhas, figuras, currículo, etc.) de acordo com o trabalho. Fonte Aptos, tamanho 30.