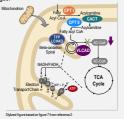
Toward LC-FAOD Genetic Diagnoses: Insights from a Rhabdomyolysis Gene Panel


Tatiele Nalin; "Omar Riemersma; Andrea Schenone; Carla Judice; Heraclio Gutierrez; Daniela Visconti; Omid K. Japalaghi; Vanessa Rangel Miller Ultragenyx Pharmaceutical Inc, Novato, CA

Background

Long-chain fatty acid oxidation disorders (LC-FAOD) are rare inborn errors of metabolism leading to serious consequences due to inability to convert long-chain fat into energy.1

Imp paired metabolism of long J. TCA cycle .l. ATP produc



LC-FAOD nuclear genes encode mitochondrial proteins CPT I, CPT II, CACT, TFP/LCHAD, and VLCAD

LC-FAOD genes encode mitochondrial proteins necessary for energy production

Breakdown of fatty acids is necessary for energy production when sugar, or glucose, levels are low. Without this energy supply, people with LC-FAOD may have symptoms that include, but are not limited to muscle pain, muscle weakness, low blood sugar, and fatigue.1

"Fatty acid oxidation provides reducing equivalents directly to the electron transport chain and supplies substrates to the fricarboxylic acid (TCA) cycle. Oxidation of even chain fats produces only acetyl-CoA and the TCA cycle can ultimately become depleted of odd chain carbon species with excessive catabolism in patients with LC-FAODs. "2

Program Eligibility

This program provides a no-charge, sponsored gene pane test for individuals known to have or suspected of having LC-FAOD. The patient must be in Latin America and:

Methods

- This Program provided no-charge molecular testing, sponsored by Ultragenyx Pharmaceutical Inc.
- Individuals were tested with a comprehensive gene sequencing panel that included either six LC-FAOD genes plus 127 additional genes or four LC-FAOD genes plus 47 rhabdomyolysis-related genes

Table 1. LC-FAOD genes

Gene	Disorder(s)
ACADVL	Very long chain Acyl-CoA dehydrogenase (VLCAD) deficiency
CPT1A*	Carnitine palmitoyltransferase type I (CPT I) deficiency
CPT2	Carnitine palmitoyltransferase type II (CPT II) deficiency
HADHA	Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency or TFP deficiency
HADHB	Trifunctional protein deficiency (TFP) deficiency
SLC25A20*	Carnitine-acylcarnitine translocase (CACT) deficiency

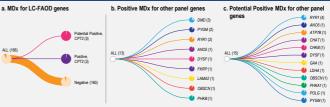
Variants were classified according to ACMG/AMP guidelines³

Criteria for molecular diagnoses

Autosomal recessive gene = 2 Pathogenic (P)/Likely-Pathogenic (LP) variants; Autosomal dominant or X-linked gene = 1 P/LF

Autosomal recessive gene = 2 variants of which at least 1 is a Variant of Uncertain Significance (VUS); Autosomal dominant X-linked gene = >1 variants of which at least 1 is a VUS

Results


Characteristics of Individuals Tested

- As of January 31, 2025, 166 individuals were tested from:
- Argentina (139, 84%) Chile (6, 4%)
- Brazil (13, 8%) - Guatemala (0) (1, <1%)
- Mexico (1, 4%)

Molecular diagnoses

- Six individuals tested had a positive or potential positive genetic diagnosis for a LC-FAOD (all CPT2), 28 had a positive or potential positive diagnosis for other genes/disorders on the panel (Figure 2)
 - 7 additional individuals had variants identified but no molecular

Figure 2. Molecular diagnoses (MDx) for CPT2 (a) and other genes on the rhabdomyolysis panel (b and c), among 166 individuals tested

Table 2. Molecular diagnoses by age group

Age Group	Negative	CPT2 Positive	CPT2 Potential Positive	Other Gene Positive	Other Gene Potential Positive	Total
<1 year				2		2
1–12 years	23	1		3	2	29
13-20 years	32	2	2	2	2	40
21-40 years	4		1	4	8	57
>40 years	34			2	2	38

Figure 3. Molecular diagnostic results by country

CPT2 variants

12 CPT2 variants (6 unique) were identified among 6 individuals

- 4P, 2 VUS

Table 3. <i>CPT</i> 2 variants and characteristics								
Variant (cDNA)	Amino Acid Change	Frequency	Classification	Variant type	Effect Type			
c.110_111dup*	p.Ser38Alafs*36	2	Pathogenic	Duplication	Frameshift			
c.1511C>T*	p.Pro504Leu	1	Pathogenic	SNV	Missense			
c.338C>T*	p.Ser113Leu	5	Pathogenic	SNV	Missense			
:.340G>C	p.Ser113Leu	1	VUS	SNV	Missense			
c.534_558delinsT*	p.Leu178_lle186 delinsPhe	1	Pathogenic	Deletion/insertion	Splice acceptor/ donor			
:.587C>T*	p.Pro196Leu	2	VUS	SNV	Missense			
*Additional data regarding these variants are available on the rare disease genes database website. * VUS = variant of uncertain significance; SNV = single nucleotide variant.								

Acknowledgments and Disclosures

We recognize and thank the individuals tested through this program. All authors are employees and shareholders of Ultra Third-party writing support was provided by Kariena Dill and paid for by Ultragenyx Pharmaceutical Inc.

Graphic design support was provided by Allison Saviano of Sephirus Communications, Inc., and paid for by Ultragenyx Pharmaceutical Inc.

References

- Vockley, et al. Mol Genet Metab. 2015; v116.
 Nykamp K, et al. Genet Med. 2017 Oct; 19(10).

Conclusions

- · This study highlights the importance of genetic testing with a comprehensive gene panel for diagnosing LC-FAOD in patients with muscular symptoms and/or rhabdomyolysis.
- . In addition to LC-FAOD, a diverse genetic landscape of myopathies were diagnosed across ages, suggesting gaps in a timely and accurate diagnosis.
- These findings also highlight the value of expanding newborn screening programs to include LC-FAOD and other treatable disorders, facilitating earlier intervention and improved long-