DELETIONS NEIGHBORING TWIST1 IN PATIENTS WITH CRANIOSYNOSTOSIS AND/OR NEURODEVELOPMENTAL DELAY: FURTHER EVIDENCES OF THE HDAC9 CONTRIBUTION.

Samira Spineli-Silva¹, Regiane Ferreira¹, Viviame Cruz¹, Caroline Nascimento¹, Carolina Rauffus¹, Mara Dell'Ospedale Ribeiro¹, Temis Maria Felix², Osvaldo Artigalás², Patricia Abisambra², Ricardo Vitorino³, Fernando Kok¹, Fabiola Monteiro¹.

Introduction:

- Structural variants encompassing only HDAC9, and not comprising TWIST1, were reported in the medical literature in individuals presenting delay, developmental with associated craniosynostosis in some cases, suggesting the involvement of TWIST1 regulatory elements that reside within HDAC91,2.
- Although currently there is no well-established phenotypic association for HDAC9, it has high expression in brain and is predicted to be highly intolerant to loss of function (pLi=1)3.
- Here, we describe three individuals with 7p21 deletions, encompassing HDAC9, without direct involvement of TWIST1 sequence.
- They presented in common neurodevelopmental delay/intellectual disability and dysmorphisms; at least one of them presented craniosynostosis.

Objective:

- To describe individuals with 7p21 deletions partially or completely encompassing HDAC9 sequence without involving TWIST1 sequence;
- To compare their phenotype with individuals previously described in the literature with 7p21 contiguous gene deletions;
- To perform genotype-phenotype correlation.

Table 1. Patients comparison with deletion at 7p21 encompassing HDAC9 and TWIS1 loss of function SNV.

	Deletion at 7p21 encompassing HDAC9				TWIST loss of function SNV
	T	nis study (N=	3)		
Phenotype	Patient 1 (6.6 Mb)	Patient 2 (8.0 Mb)	Patient 3 (110 kb)	PMID: 28220539 (900kb)	Saethre-Chotzer syndrome
Neurodevelopmental delay/intellectual disability					NR
Dysmorphisms				*	
Craniosynostosis	NO		NE	*	
Supratentorial ventricular dilatation	NO	NO		NR	NR
Seizure	NO	NO		NR	NR

Legend: *: present; NO: not observed; NE: not evaluated; NR: not reported

Discussion:

- individuals described here presented developmental delay/intellectual disability, being HDAC9 the main candidate gene in the common region of overlap due to loss of function predictors and the importance of histone deacetylase family genes in neurodevelopmental disorders.
- Additionally, disruption of TWIST1's regulatory elements nested in HDAC9 in the main hypothesis for the presence of craniosynostosis in part of these patients. Additional genes in the 7p21 contiguous genes deletions may contribute to other clinical characteristics.

Methods:

- The CNVs were detected by SNP-array technique (GSAv3 Chip - Illumina, San Diego, USA) and Whole Exome Sequencing (WES), using Target Enrichment Twist Biosciences 4 sequenced on the Illumina NovaSeq X Plus.
- CNVs calls in SNP-array data were performed using PennCNV2 methods, and in WES data using ExomeDepth.
- The results were analyzed using Abracadabra® software developed by Mendelics Genômica.
- The variants were classified using current ClinGen/ACMG recommendations.

Results:

- We found three deletions with 8,0 Mb, 6,6 Mb and 110 kb, all encompassing a common region at 7p21 affecting HDAC9 (Figure 1).
- Two were classified as likely pathogenic, and one as a variant of unknown clinical significance.
- The patients presented neurodevelopmental delay/intellectual disability (3/3); dysmorphisms (3/3); craniosynostosis (1/3), supratentorial ventricular dilatation (1/3), seizure (1/3). (Table1).

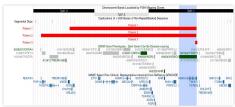


Figure 1. In red are deletions of patients of this study. The blue highlight is showing the *HDAC9* gene (OMIM in green and MANE transcript in blue) (Adapted from UCSC Genome Browser on Human - GRCh38/hg38).

Conclusion:

- Our results provide additional evidence of HDAC9 as the main candidate gene for intellectual disability in patients with Saethre-Chotzen syndrome due to 7p21 deletions.
- · Besides, it reinforces the possible contribution of HDAC9 in craniosynostosis observed in some patients with 7p21 deletions not encompassing TWIST1.

- Hirsch N, et al. HDAC9 structural variants disrupting TWIST1 transcriptional regulation lead to craniofacial and limb malformations. 1. Hirsch N. Genome Res. 2022 Jul;32(7):1242-1253. Epub 2022 Jun 16. PMID: 35710300.
- Shimbo H, et al. Contiguous gene deletion neighboring TWIST1 identified in a patient with Saethre-Chotzen syndrome associated with neurodevelopmental delay: Possible contribution of HDAC9. Congenit Anom. (Kyoto). 2018 Jan;58(1):33-35. Epub 2017 May 2. PMID: 28220539
- Jaworska J, et al. Histone deacetylases 1 and 2 are required for brain development. Int J Dev Biol. 2015;59(4-6):171-7. PMID: 26198144.

¹ Mendelics Análise Genomics, São Paulo 02511-000, SP, Brazil.
² Medical Genetics Service, Clinical Hospital of Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil.
² Clinica Eviva Mendesl, São Paulo 12210-090, SP, Brazil.