

IncRNAs as potential biomarkers in ER+ breast cancer macrophages in anti-PD-1 response

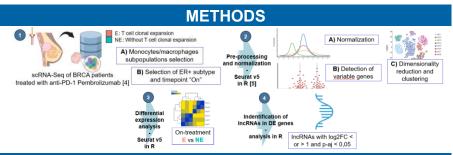
Clayton Voidelo Machado¹, Thalita Maria do Nascimento² and Carolina Mathias¹

1 – Department of Genetics, Federal University of Paraná, Post-graduation Program in Genetics, Curitiba, Brazil 2 - Department of Informatics, Federal University of Paraná, Curitiba, Brazil

E-mail: voidelo@ufpr.br

INTRODUCTION

Mathough presenting fewer tumor infiltrating lymphocytes (TILs) than triple-negative breast cancer (TNBC), luminal (ER+) tumors have other important immune cells in the tumor microenvironment (TME) that act in response to ICIs targeting the PD-1/PD-L1 pathway in breast cancer (BC) [1].


An example of those cells populations are the tumor-associated macrophages (TAMs), comprising approximately 50% of the cells in the TME in breast cancer, and exhibiting high PD-L1 expression [2].

Notarized macrophage phenotypes are of immunotherapeutic relevance, with M1 being associated with an antitumor effect and M2 being associated with an immunosuppressive effect [2].

🌄 Long non-coding RNAs (IncRNAs) are a potential class of biomarker as they display a highly tissue-specific expression and are involved in various regulatory functions in cancer [3].

MAIN GOAL

🌑 Considering TAMs can affect response to anti-PD-1/anti-PD-L1 immunotherapy, we aim to investigate the potential molecular mechanisms involved in treatment effectiveness of regulating molecules such as IncRNAs in ER+ patients' responsiveness.

RESULTS AND DISCUSSION

Figure 1. Differentially expressed IncRNAs in ER+ patients treated with Pembrolizumab (n=15) identified in a scRNA-Seq dataset, in the subset Ontreatment, assessing E group (n=3) versus NE group (n = 12).

BRCA Subtype	Gene expression (p<0,05)	Cell population
		Myeloid (monocytes, macrophages)
ER+	UPREGULATED	INHBA-AS1, LINC00937, LINC01679, MUC20-OT1, USP30-AS1
	DOWNREGULATED	GAPLINC, LINC01094

Criteria: average log2FC < or > 1 and p-value adjusted < 0.05.

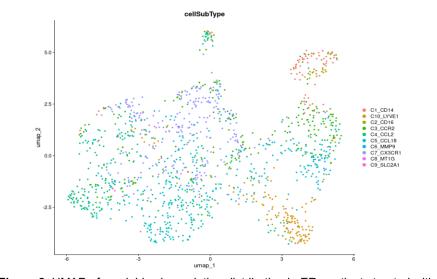


Figure 2. UMAP of myeloid subpopulation distribution in ER+ patients treated with Pembrolizumab (Bassez et al., 2021 scRNA-Seq dataset).

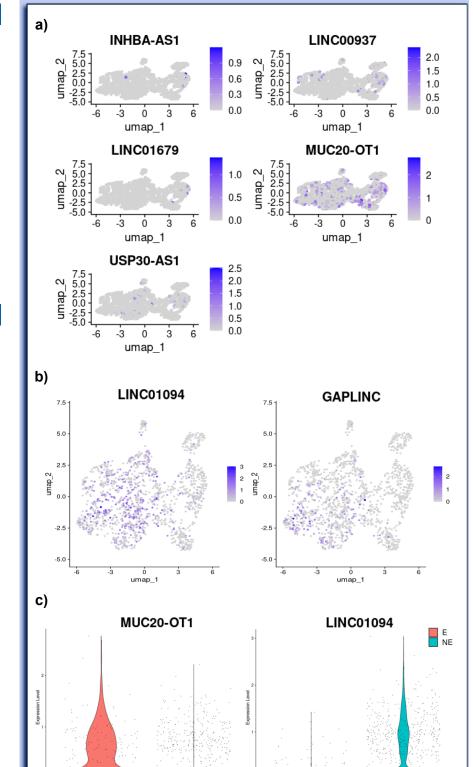


Figure 3. a) Feature plots showing the distribution of upregulated IncRNAs in myeloid subpopulations from ER+ patients; b) feature plots showing the distribution of downregulated IncRNAs in the same subpopulations; c) violin plots of the most variable IncRNAs in ER+ patients' myeloid cells, with MUC20-OT1 being more highly expressed in the 'E' group (potential responders), while LINC01094 is more highly expressed in the 'NE' group (non-responders).

CONCLUSIONS

Those findings indicate IncRNAs have a potential role associated with macrophages responsiveness to anti-PD-1 treatment in ER+ subtype of BC, suggesting that further studies of their regulatory mechanisms can highlight them as potential response biomarkers.

REFERENCES

[1] O'MEARA, T ET AL. IMMUNOLOGICAL DIFFERENCES BETWEEN IMMUNE-RICH ESTROGEN RECEPTOR-

[2] PU, Y.; JI, Q. TUMOR-ASSOCIATED MACROPHAGES REGULATE PD-1/PD-L1 IMMUNOSUPRESSION. FRONTIERS IN IMMUNOLOGY, V. 13, MAI, 2022.

[3] BEYLERLI, O. ET AL. LONG NONCODING RNAS AS PROMISING BIOMARKERS IN CANCER. NONCODING RNA RESEARCH, V. 7, N. 2, P. 66-70, 25 FEB. 2022.

141 BASSEZ, A. ET AL, A SINGLE-CELL MAP OF INTRATUMORAL CHANGES DURING ANTI-PD1 TREATMENT OF PATIENTS WITH BREAST CANCER. NATURE MEDICINE, V. 27, N. 5, P. 820-832, MAY 2021

[5] BUTLER, A. ET AL. INTEGRATING SINGLE-CELL TRANSCRIPTOMIC DATA ACROSS DIFFERENT CONDITIONS, TECHNOLOGIES, AND SPECIES. NATURE BIOTECHNOLY, V. 36, P. 411-420, MAY 2018.

