

Differential cell-cell communication networks in anti-PD-1 responsiveness between ER+ and TNBC breast cancer subtypes

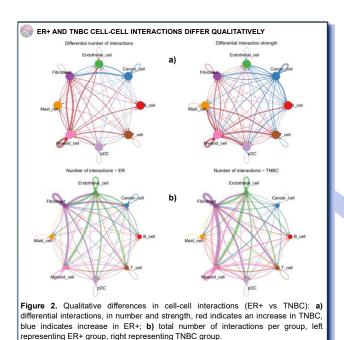
Clayton Voidelo Machado¹, Patrícia Savio de Araújo Souza¹, Daniel de Lima Bellan¹ and Carolina Mathias¹

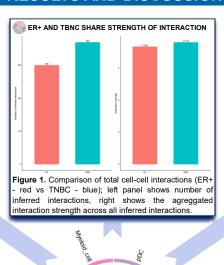
1 – Department of Genetics, Federal University of Paraná, Post-graduation Program in Genetics, Curitiba, Brazil E-mail: voidelo@ufpr.br

INTRODUCTION

Margin Immune Checkpoint Inhibitor (ICI) therapy is only approved for triple-negative breast cancer (TNBC) with a "hot" tumor presenting microenvironment high tumor-infiltrating (TME), lymphocytes (TILs) and PD-1/PD-L1 expression [1].

Emerging evidence suggests that breast cancer's luminal (ER+) subtypes, traditionally classified as immune deprived, may exhibit responsiveness to immunotherapy [2].


Positive response to immunotherapy depends not solely on immune infiltration but also on the cellular communication network within the tumor microenvironment (TME) [1].


MAIN GOAL

To investigate this, we analyzed scRNA-seq data from ER+ and TNBC patients treated with anti-PD-1 Pembrolizumab monotherapy, aiming to identify cell signaling pathways that are similar and distinct between subtypes sand are associated with treatment response.

METHODS A) Creating Seurat object Selection of ER+ and TNBC samples with timepoint "On" ormalizatio B) Data with anti-PD-1 Pembrolizumab [3] normalizatior in R [4] ER: luminal patients presenting T cells clonal expansion INBC: triple-negative patients without T cells clonal expansion Individual Differential ER+ group cell-cell interactions interaction analysis (ER+vsTNBC) Differential cell-cell analysis communication networks CellChat v2 analysis of potential responsive TNBC group cell-("E") ER+ and TNBC groups in R [5] after anti-PD-1 treatment

RESULTS AND DISCUSSION

E(n = 8)

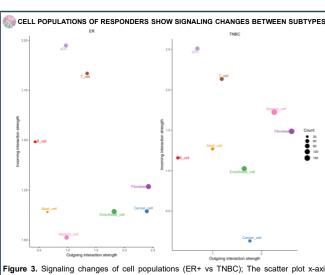
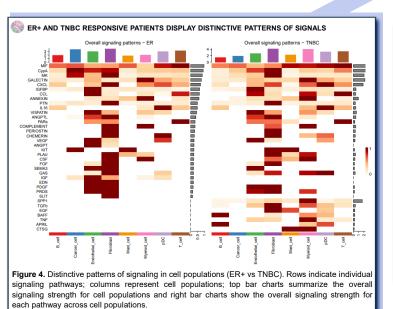
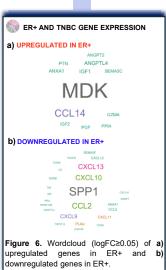




Figure 3. Signaling changes of cell populations (ER+ vs TNBC); The scatter plot x-axis represents the total strength sent from each cell to other populations and y-axis represents the total strength of signals received by each cell from all other cell populations. It allows to understand the cell population's signaling role (sender, receiver, both

R+ AND TNBC HAVE EXCLUSIVE PATHWAYS ASSOCIATED WITH ANTI-PD-1 RESPONSIVENESS

ER TNBC

Figure 5. Active pathways and information flow in responsiveness to anti-PD-1 conditions. Red represents the information flow of signals from ER+, while blue represents signals from TNBC amples. The left graph displays normalized values and right graph displays absolute values.

CONCLUSIONS

Our findings demonstrate substantial differences TME communication networks between responsive ER+ and TNBC suggesting distinct active pathways lead to immunotherapy-permissive TME in each subtype. Response to anti-PD-1 may depend on specific pathway activation rather than global interaction quantity, offering novel treatment targets for breast cancer subtypes.

REFERENCES

[1] DEBIEN, V. ET AL. IMMUNOTHERAPY IN BREAST CANCER: AN OVERVIEW OF CURRENT STRATEGIES AND PERSPECTIVES. NPJ BREAST CANCER, V. 9, N.1, P. 7, 13 FEB. 2023.

[2] DIECI, M. V. ET AL. NEOADJUVANT CHEMOTHERAPY AND IMMUNOTHERAPY IN LUMINAL B-LIKE BREAST CANCER: RESULTS OF THE PHASE II GIADA TRIAL. CLINICAL CANCER RESEARCH, V. 28, N. 2, P. 308-317, 15 JAN. 2022.

[3] BASSEZ, A. ET AL. A SINGLE-CELL MAP OF INTRATUMORAL CHANGES DURING ANTI-PD1 TREATMENT OF PATIENTS WITH BREAST CANCER. NATURE MEDICINE, V. 27, N. 5, P. 820-832, MAY 2021

[4] BUTLER, A. ET AL. INTEGRATING SINGLE-CELL TRANSCRIPTOMIC DATA ACROSS DIFFERENT CONDITIONS. TECHNOLOGIES, AND SPECIES. NATURE BIOTECHNOLY, V. 36, P. 411-420, MAY 2018.

[5] JIN, S.; PLIKUS, M. V.; NIE, Q. CELLCHAT FOR SYSTEMATIC ANALYSIS OF CELL-CELL COMMUNICATION FROM SINGLE-CELL TRANSCRIPTOMICS. NATURE PROTOCOLS, V. 20, N. 1, P. 180-219, JAN. 2025.

