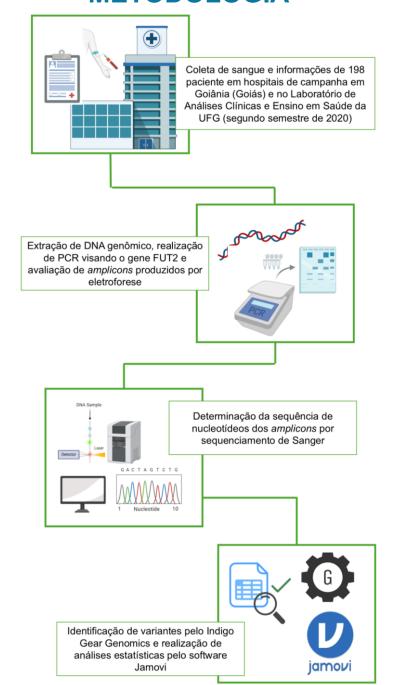


VARIANTES GENÉTICAS NO GENE FUT2 E SUA ASSOCIAÇÃO COM A MORTALIDADE POR COVID-19

AUTORES: Andreia Luiza Pereira Silva¹; Luiz Henrique Alves Costa¹(luizalvesc@discente.ufg.br); Romes Bittencourt Nogueira de Sousa¹; Lis Raquel Silva do Nascimento¹; Gustavo Rodrigues Pedrino¹; Denise da Silva Pinheiro¹; Lucilene Arilho Ribeiro Bicudo¹; Elisângela de Paula Silveira Lacerda¹

NOME DAS INSTITUIÇÕES: ¹Universidade Federal de Goiás, Goiânia, Brasil.


INTRODUÇÃO

A COVID-19 é uma doença pandêmica que ocasionou milhões de infecções e óbitos, constituindo um dos maiores problemas de saúde pública das últimas décadas. Embora idade, sexo masculino e comorbidades sejam importantes no curso da doença, fatores genéticos também contribuem consideravelmente para o desfecho da doença. O gene FUT2, que codifica a enzima fucosiltransferase 2, tem sido amplamente estudado em relação à suscetibilidade a doenças infecciosas, devido à sua função na produção de antígenos ABO em secreções, além de seu papel em doenças inflamatórias e autoimunes. Até o momento, o impacto de polimorfismos do gene FUT2 no curso da COVID-19 não foi explorado.

OBJETIVO

Avaliar se polimorfismos no gene FUT2 estão associados com o óbito por COVID-19.

METODOLOGIA

Figura 1. Etapas da metologia empregadas no estudo. Criado com Biorender.

RESULTADOS E DISCUSSÃO

Foram constatadas, ao todo, 18 variantes nas regiões avaliadas do gene FUT2. Dentre essas, 10 variantes (c.390C>T, c.*10A>G, c.993A>G, c.204A>G, c.-2-40C>T, c.-2-67G>C, c.461G>A, c.772G>A, c.*12T>C, c.249C>T) foram associadas com menos chances de óbito (*Odds ratio* < 1 e p-valor <0,05) e uma variante (c.-2-104C>G) estava associada com maior probabilidade de falecimento (*Odds ratio* = 24.075 e p-valor = 0,007).

Figura 1. Associação entre variantes do gene FUT2 e chance de óbito por COVID-19, ajustada por fatores de confusão (regressão binária multivariada).

,. 09. 00040	billialia li		~~ <i>,</i> .		
dbSNP	Genótipo	Óbito (n=99)	Leve (n=99)	ORa (IC95%)	р
rs281377	CC	62	30	Referência	-
	CT+TT	37	69	0.256 (0.102-0.644)0	0.004
rs485073	AA	73	36	Referência	-
	AG+GG	26	63	0.159 (0.061-0.419)	<0.001
rs485186	AA	76	34	Referência	-
	AG+GG	25	65	0.099 (0.035-0.280)	<0.001
rs492602	AA	68	37	Referência	-
	AG+GG	31	62	0.149 (0.056-0.394)	<0.001
rs516246	CC	69	37	Referência	-
	CT+TT	30	62	0.145 (0.055-0.387)	<0.001
rs516316	GG	75	52	Referência	-
	GC+CC	24	47	0.242 (0.093-0.624)	0.003
rs601338	GG	69	33	Referência	-
	GA+AA	30	66	0.109 (0.040-0.301)	<0.001
rs602662	GG	67	31	Referência	-
	GA+AA	32	68	0.172 (0.069-0.426)	<0.001
rs603985	TT	65	34	Referência	-
	TC+CC	34	65	0.187 (0.075-0.467)	<0.001
rs679574	CC	80	98	Referência	-
	CG+GG	19	1	24.075 (2.432-238.346)	0.007
rs681343	CC	75	34	Referência	-
	CT+TT	24	65	0.085 (0.0294-0.244)	< 0.001
	004	<u> </u>			

Legenda: ORA – *Odds Ratio* ajustado; IC95% - Intervalo de Confiança de 95%.

Os resultados encontrados neste estudo sugerem que alterações genéticas no FUT2 podem modular a suscetibilidade ou a resposta à infecção pelo SARS-CoV-2, possivelmente por mecanismos relacionados à expressão de antígenos em mucosas, interação com o patógeno ou regulação de mediadores inflamatórios.

CONCLUSÃO

O gene FUT2 pode representar um marcador genético promissor para estratificação de risco e abordagem personalizada em infecções virais graves, como a COVID-19. No entanto, mais estudos com outros períodos da pandemia e populações diferentes são necessários para confirmar os achados deste trabalho.

REFERÊNCIAS

-KING, Jovanka R. et. al. Fucosyltransferase gene polymorphisms and Lewisb-negative status are frequent in Swedish newborns, with implications for infectious disease susceptibility and personalized medicine. Journal of the Pediatric Infectious Diseases Society, v. 8, n. 6, p. 507-518, 2019.

-HU, Mingyang et al. Fucosyltransferase 2: a genetic risk factor for intestinal diseases. **Frontiers in Microbiology**, v. 13, p. 940196, 2022.-SINGH, Rajesh R. et al.

AGRADECIMENTOS: Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo financiamento. Agradecem também ao Hospital do Servidor Público, ao Hospital e Maternidade Célia Câmara, ao Centro de Genética Humana (CEGH-UFG) e à Universidade Federal de Goiás pelo suporte institucional, infraestrutura e colaboração indispensáveis para a realização desta pesquisa.

