





# A MILD NON-CLASSIC FORM OF BCS1L RELATED MITOPATHY MIMICKING FATTY ACID B OXIDATION DISORDER: CASE REPORT AND REVIEW OF LITERATURE

LUCAS CADETE CALDEIRA COSTA1; EMÍLIA KATIANE EMBIRUÇU DE ARAÚJO LEÃO1; NEY CHRISTIAN AMARAL BOA SORTE1

1HOSPITAL UNIVERSITÁRIO PROFESSOR EDGARD SANTOS (UFBA)

#### **INTRODUCTION**

BCSL1 mitopathies are the commonest form of complex III disorder and are part of the oxidative phosphorylation disorders. Although classical phenotypes associated with biallelic variants in BCS1L are described (Bjornstad syndrome; GRACILE syndrome; Complex III deficiency, nuclear type 1; Nuclear Leigh Syndrome Spectrum) literature reports evidence a phenotype continuum with many intermediary forms. We describe a case of a 6-year-old boy with a mild form of disease with 3 pathogenic variants on BCS1L gene.

#### **CASE REPORT**

Boy, 6 years old, was referred to the clinical genetics service due to recurrent hypoglycemia, nausea and vomiting associated with metabolic acidosis onset at age 1. He presented with development delay and learning difficulties . Heart evaluation was normal. Amino acid chromatography evidence no alterations, but acylcarnitine profile evidenced low free carnitine and elevated C10, C12:1 C14, C14:1, C14:2, C16 and C16:1. Urine organic acid evidence elevated lactic acid, 3-OHbutyric acid, 2-OH-butyric acid and 4-OH-phenyllactic acid. The patient was treated with L-carnitine and cornstarch with a good metabolic response. Whole Genome Sequence evidenced 3 variants in compound heterozygous in BCSL1 (c.355C>T:p.(Arg119Ter); c.147A>G:p.(?); c.164C>G:p.(?)), all pathogenic.

#### Table 1: Differential diagnosis of hypoglycemia

## DISCUSSION AND CLOSING COMMENTS

We describe a mild atypical form of BCS1L-related disorder presenting with recurrent hypoglycemia and metabolic acidosis responsive to L-carnitine and cornstarch. Clinical features of atypical forms of the disease can mimic other inborn errors of metabolism, including fatty acid B-oxidation defects. Although genotype-phenotype correlation of BCS1L related disorders is limited, prognosis correlates with age onset of presentation of symptoms, with early death occurring when symptoms start in the first month of life. The unknown phase of the variant limits genotypephenotype correlation in our patient and new evidence is necessary to determine if L carnitine can prevent progression of the disease in the future. The mitochondrial role in energy production and related proteins explain the clinical overlap between the symptoms of BCS1L and other inborn errors of metabolism like fatty acid B oxidation defect, glycogen storage diseases, acidemia and other OXPHOS Disorders of oxidative phosphorylation present a highly variable phenotype with intermediary forms along the phenotype spectrum. The intermediary forms of the disease should be suspected in clinical cases resembling fatty acid B oxidation defects and organic aciduria due to overlapping clinical features. Next Generation Sequencing is an essential tool for the diagnosis of this rare metabolic disorder and doesn't have any change

| with the diet                              |                                                                                                             |                                                                                            |                                                                                                                 |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Feature/ Disorder                          | Complex III deficiency (BCS1 L-related)                                                                     | Glutaric aciduria type II<br>(MADD)                                                        | β-oxidation defects                                                                                             |
| Hypoglycemia (ketotic vs no n-<br>ketotic) | Variable /Non specific.                                                                                     | Typically non-ketotic<br>hypoglycemia                                                      | Typically non-ketotic<br>hypoglycemia                                                                           |
| Acylcarnitine profile (pla sma)            | Usually non-specific; may be<br>normal or show secondary,<br>variable changes; no<br>pathogno monic pattern | Characteristic broad elevation of C4, C5 and C8. Other higher acylcamitine may be elevated | Defect-spe cific patterns:  • MCAD → ↑ medium-chain (C8 ± C6, C10)  • VLCAD / LCHAD → ↑ long-chain (C14:1, C16) |
| Acidosis                                   | Lactic Acidosis                                                                                             | Orga nic metabolic ac idosis                                                               | Lactic acidosis                                                                                                 |

### **REFERENCES**

- Hikmat O, Isohanni P, Keshavan N, Ferla MP, Fassone E, Abbott MA, Bellusci M, Darin N, Dimmock D, Ghezzi D, Houlden H, Invernizzi F, Kamarus Jaman NB, Kurian MA, Morava E, Naess K, Ortigoza-Escobar JD, Parikh S, Pennisi A, Barcia G, Tylleskär KB, Brackman D, Wortmann SB, Taylor JC, Bindoff LA, Fellman V, Rahman S. Expanding the phenotypic spectrum of BCS1L-related mitochondrial disease. Ann Clin Transl Neurol. 2021 Nov;8(11):2155-2165. doi: 10.1002/acn3.51470. Epub 2021 Oct 18. PMID: 34662929; PMCID: PMC8607453
- Baker RA, Priestley JRC, Wilstermann AM, Reese KJ, Mark PR. Clinical spectrum of BCS1L Mitopathies and their underlying structural relationships. Am J Med Genet A. 2019 Mar;179(3):373-380. doi: 10.1002/ajmg.a.61019. Epub 2018 Dec 24. PMID: 30582773.
- Al-Owain M, Colak D, Albakheet A, Al-Younes B, Al-Humaidi Z, Al-Sayed M, Al-Hindi H, Al-Sugair A, Al-Muhaideb A, Rahbeeni Z, Al-Sehli A, Al-Fadhli F, Ozand PT, Taylor RW, Kaya N. Clinical and biochemical features associated with BCS1L mutation. J Inherit Metab Dis. 2013