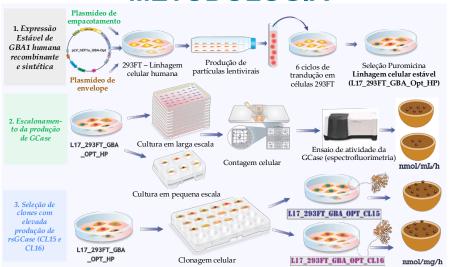


Massachusetts Institute of Technology

Plataforma Lentiviral Otimizada para Produção Escalonável de GCase Recombinante e Sintética Humana: Clones Celulares para Aplicação em Terapia Enzimática e Gênica na Doença de Gaucher

Ana Carolina Coelho¹; Frederico G.F. Lobão Rodrigues Gomes¹; Claudia Emília Vieira Wiezel¹; Gabriella Macedo Mascarenhas Diniz¹; Jéssica Luana Souza Cardoso¹; Vania D'Almeida²; Velia Siciliano³; Ron Weiss⁴; Stanton Gerson⁵; **Aparecida Maria Fontes**^{1*}

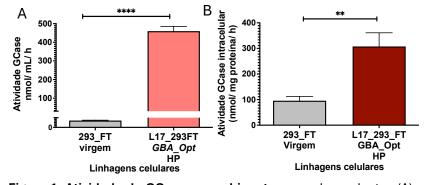
¹Departamento da Genética da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo; ²Escola de Medicina, Universidade Federal de São Paulo; ³Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Healthcare, Italy; ⁴Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, EUA; ⁵Case Comprehensive Cancer Center, Case Western Reserve University, EUA.*e-mail: aparecidamfontes@usp.br


INTRODUÇÃO

A Doença de Gaucher (DG) é uma condição genética com padrão de herança autossómica recessiva causada por mutações no gene GBA1, levando à deficiência da enzima lisossomal β-glicocerebrosidase (GCase) (Grabowski, 2008, Elstein et al 2024). A terapia de reposição enzimática (TER) com GCase recombinante é o tratamento padrão, mas seu alto custo e dependência de importações comprometem a sustentabilidade no tratamento no Brasil.

OBJETIVO

Neste estudo, desenvolvemos uma plataforma lentiviral (LV) contendo GBA1 códon-otimizado sob promotor hEF1α, com o objetivo de estabelecer linhagens celulares humanas 293FT produtoras de β-glicocerebrosidase (GCase) recombinante e sintética, visando aplicações em TRE e terapia gênica no Brasil


METODOLOGIA

O vetor lentiviral LV_EF1a_GBA_Opt foi construído utilizando biologia sintética (gBlocks e PCR overlap) e clonado pelo sistema Gateway. Partículas virais foram concentradas e tituladas por qPCR (7,88 × 10⁸ partículas/ mL). Células 293FT foram transduzidas em seis ciclos (MOI 30–50) com spinoculação e seleção com puromicina, gerando a população heterogênea L17_293FT_GBA_OPT_HP. Onze clones foram isolados por plaqueamento e expandidos. A atividade de GCase foi quantificada por ensaio fluorimétrico (4-MUG) em lisados e sobrenadantes. A escalabilidade foi avaliada em cultura de 10 layers (560 mL).

RESULTADOS E DISCUSSÃO

A população L17_293FT_GBA_OPT_HP apresentou atividade enzimática secretada de 459.5 ± 24.82 nmol/ mL, com aumento de 62,4 vezes em relação ao controle (7,04 ± 0,4 nmol/mL/h; p < 0,0001). A atividade intracelular foi de 307.5 + 53.5 nmol/ mg proteína/h, superior à do controle (95.6 ± 16.5 nmol/mg/h; p = 0,0026 (Figura 1).

Figura 1: Atividade da GCase recombinante: em sobrenadantes (A) e lisados de células (B) L17_293FT_GBA_OPT_HP após seleção com puromicina.

A linhagem L17_293FT_GBA_OPT_HP manteve a atividade enzimática em diferentes volumes de cultivo, produzindo 209,52 nmol/mL/h em placa de 6 poços e 201.931 nmol/mL/h no sistema de 10 camadas (Figura 2).

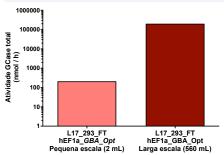


Figura 2: Produção de GCase em larga escala: aumento de 963 vezes no total secretado, com 96,4% da eficiência mantida em relação à pequena escala.

Após a seleção com puromicina, foram isolados 11 clones derivados da população L17_293FT_GBA_OPT_HP (Tabela 1).

Tabela 1: Atividade enzimática da GCase em clones isolados da linhagem L17_293FT_GBA_OPT_HP.

Clones	Atividade GCase nmol/mL/h	Clones	Atividade GCase nmol/mL/h
L17_CL5	265,087	L17_CL_13	440,95
L17_CL7	89,911	L17_CL_15	585,464
L17_CL8	230,045	L17_CL_16	683,952
L17_CL9	301,160	L17_CL _17	207,610
L17_CL10	118,907	L17_CL _18	167,931
L17_CL11	285,561		

Os 11 clones revelaram ampla variação produtiva: três (27%) com alta produção (>400 nmol/mL/h), cinco (45%) moderada (200-400 nmol/mL/h), e três (28%) baixa produção (<200 nmol/mL/h). CL15 e CL16 destacaram-se como mais promissores (Tabela 1). Também observou-se que a morfologia dos mesmos foi mantida (Figura 3A - clone 16) e os níveis de atividade intracelular foram: CL15 com 763,8 ± 135,1 nmol/mg/h e CL16 com 752,0 ± 152,1

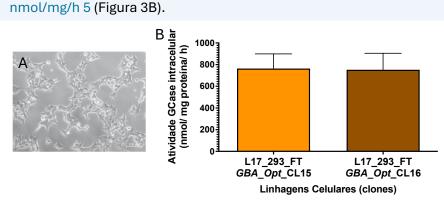


Figura 3: Análise morfológica do clone 16 (A) e atividade GCase intracelular dos clones 15 e 16 (B).

CONCLUSÃO

A plataforma desenvolvida combina otimização de códon, expressão sob promotor hEF1a e vetores lentivirais, resultando em clones com alta produtividade de GCase. Os resultados apoiam sua aplicação translacional em TER e terapia gênica para a Doença de Gaucher. Doença de Gaucher.

REFERÊNCIAS

Grabowski, Lancet 2008, 372:1263-1271; Elstein et al., 2024. J Clin Med 13.

