







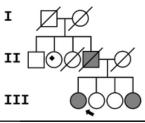
# DOUBLE HETEROZYGOSITY IN A PATIENT WITH MILD-MODERATE ALPORT SYNDROME

Tayna da Silva Fiuza; José Eduardo Kroll; Rafaella Sousa Ferraz; Gisele Guiçardi Tomazella; Sandro José de Souza; João Ivanildo da Costa Ferreira Neri.

DNA GTx Bioinformatics; Bioinformatics Multidisciplinary Environment (BioME UFRN); Federal University of Rio Grande do Norte (UFRN).

## INTRODUCTION

Alport syndrome (AS) is a rare genetic disease marked by microscopic hematuria and chronic kidney disease, and may also compromise vision and hearing. AS stems from mutations in the COL4A3, COL4A4 or COL4A5, disrupting the formation of the  $\alpha 3-\alpha 4-\alpha 5$  chain in the collagen IV network. The disease manifests mainly through renal impairment, with persistent hematuria, proteinuria and progressive decline in renal function. Genotype-phenotype correlations are relatively evident, with etiologies involving autosomal dominant, autosomal recessive, Xlinked, and even digenic inheritance patterns. Diagnosis relies on urinalysis, histological examination and genetic testing, aided by nextgeneration sequencing.


#### **OBJECTIVE**

- 1.To present a patient with two likely AS-related pathogenic variants, showing only renal dysfunction and a report of similar cases in the paternal family, but with varied clinical expression;
- 2.To discuss whether the variants found are both determinants of the patient's condition or if one of them may predominate.

### CASE DESCRIPTION

A 49-year-old female sought a geneticist with slowly progressive proteinuria for 30 years. She is the eldest daughter of four children born to a non-consanguineous coupl<mark>e, re</mark>porting a similar condition in her father (deceased) and younger sister (see pedigree). Genomic analysis by exome sequencing revealed two heterozygous variants the COL4A3 gene: the first, c.3325C>T (p.Pro1109Ser), a missense variant that affects a region with an important role in the structural stability of collagen; the second, c.3829G>A (p.Gly1277Ser), also missense, classified as likely pathogenic for Alport syndrome. The first variant has an uncertain significance because, although individuals with membranous three nephropathy, familial hematuria and Alport syndrome have been previously identified, it was individual (or seen in a healthy asymptomatic for nephrological conditions).

second alteration has already deposited by a Brazilian group (ClinVar SCV002526416) probably as pathogenic or pathogenic for Alport syndrome at different levels of specification, including a case of autosomal dominant inheritance. The variants were screened in living relatives (mother and sisters), but the results are not yet available.





Individuals with Alport Syndrome presenting only proteinuria.

Individual donated a kidney to II-4.

# DISCUSSION

It is possible that both observed variants contribute to the patient's renal manifestation, given their relatively low frequency (0.42% and 0.03%) in ClinVar and the fact that they only appear heterozygous, never homozygous, in databases. Furthermore, population their dysfunctional impact on the α3 chain of collagen IV in the glomerular basement membrane has already been reported. However, conflicting insertions in the databases raised suspicions that one of them may not play a relevant role in this case, or even that the low severity of the condition is due to the combined action of both variants. It was recommended that the family analysis be expanded to better identify the role of each variant in this group.

#### REFERENCES

Nozu, K., Nakanishi, K., Abe, Y., Udagawa, T., Okada, S., Okamoto, T., ... & Iijima, K. (2019). A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clinical and experimental nephrology, 23(2), 158-168.
Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 120070; (10/10/2023): World Wide Web URL: <a href="https://omim.org/entry/120070">https://omim.org/entry/120070</a>
Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. Phenotypic Series Number: <a href="https://omim.org/phenotypicSeries/PS301050">https://omim.org/phenotypicSeries/PS301050</a> : World Wide Web URL: <a href="https://omim.org/phenotypicSeries/PS301050">https://omim.org/phenotypicSeries/PS301050</a>

