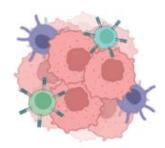
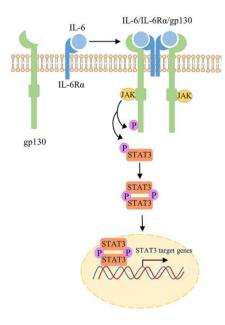


Análise in silico da via IL-6/JAK2/STAT3 no microambiente tumoral do câncer de mama

Karina Mayumi Tani Bezerra de Melo^{1*}; Gabriel Rômulo Parente da Silva¹; Pedro Henrique Bezerra Fontes¹; Stephanie Loureiro Leão¹; Elisa Fotin Genn Barros²; Beatriz Eda de Oliveira Isídio¹; David Beltrán Lussón¹; Isabelle Silva Simões¹; Isabela Duarte de Farias¹; Gabriela Vitória de Araujo¹; Micaela Evellin dos Santos Silva¹; Larissa Silva de Macedo¹; Vanessa Emauelle Pereira Santos¹; Antonio Carlos de Freitas¹


¹Universidade Federal de Pernambuco, ²Faculdade Pernambucana de Saúde *karina.mayumi@ufpe.br


INTRODUÇÃO

Para cada ano do triênio 2023-2025, segundo o INCA, foram estimados 73.610 novos casos de câncer de mama no Brasil (INCA, 2022)

O microambiente tumoral (TME) apresenta células que exercem um papel central na progressão do câncer ao modular a expressão de genes envolvidos em processos próinflamatórios.

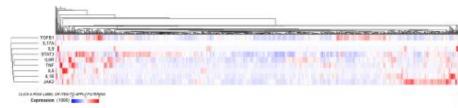
A interleucina 6 (IL-6) desempenha um papel crítico na regulação do microambiente tumoral ao ativar a via Janus Kinase 2/Transdutor de Sinal e Ativador de Transcrição 3 (JAK2/STAT3)

OBJETIVO

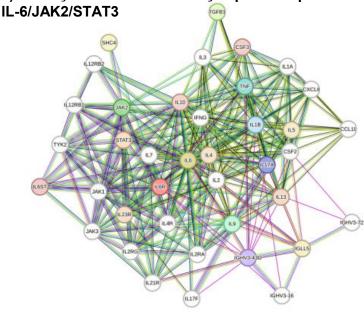
Esse estudo tem como objetivo avaliar, por meio de ferramentas *in silico*, os componentes e interações da via IL-6/JAK2/STAT3 no TME do câncer de mama

METODOLOGIA

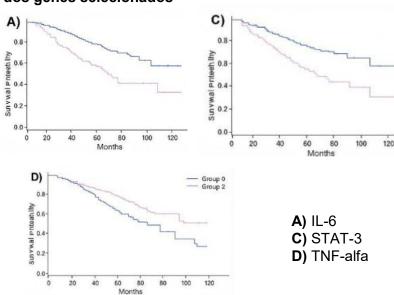
Análise de expressão dos genes envolvidos no microambiente tumoral da via IL-6/JAK2/STAT3


Predição de rede de interação proteína-proteína (PPI) da via IL-6/JAK2/STAT3

Análise de sobrevida global baseada na expressão dos genes selecionados


RESULTADOS E DISCUSSÃO

1) Análise de expressão dos genes envolvidos no microambiente tumoral da via IL-6/JAK2/STAT3



O *heatmap* evidenciou diferenças na expressão gênica dos genes STAT3, IL-6 e TGF-β1 que apresentaram maior expressão em comparação aos demais.

2) Predição de rede de interação proteína-proteína da via

3) Análise de sobrevivência global baseado na expressão dos genes selecionados

Os dados obtidos indicaram que pacientes com alta expressão de IL-6 apresentaram melhor sobrevida global, havendo discrepância com a literatura.

CONCLUSÃO

O estudo confirma o envolvimento da via IL-6/JAK2/STAT3 no câncer de mama, destacando STAT3, IL-6 e TGF-β1 como reguladores críticos do microambiente tumoral.

REFERÊNCIAS

INCA. **INCA estima 704 mil casos de câncer por ano no Brasil até 2025**. Disponível em: https://www.gov.br/inca/pt-br/assuntos/noticias/2022/inca-estima-704-mil-casos-de-cancer-por-ano-no-brasil-ate-2025.

