

Expanding the Genetic Spectrum: From Biallelic GDF5/BMPR1B Acromesomelic Dysplasias to a Novel case of Digenic Inheritance.

AUTHORS: DERNIVAL DANTAS DIAS JUNIOR', GABRIELA YUMI GOTO SALTI', ERIKA PRISCILA MACHADO', GIULIA ZOCCOLI BUENO', RAFAEL AVELAR MACHADO', HELOISA AUGUSTA CASTRALLI', EDUARDO DA CÁS', CONSÓRCIO GENOMAS RAROS', MATHEUS AUGUSTO ARAUJO CASTRO', GUILHERME LOPES YAMAMOTO', RACHEL SAYURI HONJO KAWAHIRA', CHONG AE KIM', DEBORA ROMEO BERTOLA'.

NAME OF INSTITUTIONS: ICr, Hospital das Clínicas FMUSP¹, INSTITUTO DE ENSINO E PESQUISA DO HOSPITAL SÍRIO LIBANÊS², PROJETO GENOMAS RAROS - HOSPITAL ISRAELITA ALBERT EINSTEIN².

INTRODUCTION

Acromesomelic dysplasias (AMDs) represent a clinically and genetically heterogeneous group of autosomal recessive characterized dysplasias by shortening of mesomelic/acromelic segments. AMDs include Grebe-type, Du Pan syndrome and Demirhan-type, all associated with pathogenic variants in GDF5 or its receptor BMPR1B. These genes encode components of the BMP/TGF-β pathway, where GDF5-BMPR1B interaction regulates chondrogenesis via SMAD-dependent signaling. Heterozygous variants in GDF5 and BMPR1B genes are classically associated with type-C brachydactyly. Notably, mesomelic involvement has not been reported in clinical presentations resulting from heterozygous mutations in these genes. Although the functional interdependence between GDF5/BMPR1B in BMP signaling is well-established, and robust evidence demonstrates that biallelic variants in either gene can produce similar AMD, there are no documented reports of individuals harboring simultaneous pathogenic variants in both GDF5 and BMPR1B leading to novel or more severe phenotypes. We report on 3 individuals presenting AMD, one of them with Du Pan phenotype and heterozygous variants in GDF5 and BMPR1B.

CASES PRESENTATION

Case 1: a 13-year-old boy presenting short stature with bilateral absent fibula and type-C brachydactyly, harbored a homozygous BMPR1B pathogenic variant (c.1058T>C; p.Leu353Pro), compatible with the diagnosis Demirhan-type AMD. Case 2: a 1-year-old boy presenting severe acromesomelic and rhizomelic shortening, with absent ossification of long bones/phalanges, a globular appearance of the fingers and toes and history of consanguinity, showed a homozygous GDF5 pathogenic variant (c.1214T>C; p.Leu405Pro), compatible with the diagnosis of Grebe-type AMD. Case 3: a 15-year-old girl with type-C brachydactyly, bilateral fibular hypoplasia and postaxial polydactyly of the right foot, compatible with Du Pan AMD. Targeted Sanger sequencing of GDF5 identified a heterozygous, paternally likely-pathogenic variant (c.1198_1200dup; p.Cys400dup). In order to identify a second variant in GDF5, genome sequencing was performed and did not show another rare variant in GDF5, but identified a maternally inherited, pathogenic variant in BMPR1B (c.1457G>A; p.Arg486Gln).

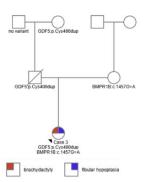


Figure 1, Case 3 heredogram, showing inheritance pattern (confirmed by sanger)

Figure 2. Case 1, radiographs and hand, showing bilateral absent fibula and type-C brachydactyly (A-D); Case 2, presenting severe acromesomelic and rhizomelic shortening, with absent ossification of long bones/phalanges, a globular appearance of the fingers (E-H); Case 3, type-C brachydactyly, bilateral fibular hypoplasia and postaxial polydactyly of the right foot (I-O).

DISCUSSION AND FINAL **COMMENTS**

The cases reported here show classical phenotypes within the group of AMD harboring biallelic variants in GDF5/BMPR1B in two individuals and a possible novel mechanism in a third case harboring heterozygous variants in these genes, conferring a more severe phenotype that would be expected in heterozygous individuals. As in the literature hypomorphic biallelic variants in these genes interact mutually to down-regulate the pathway, we propose that these variants compromise the ligand GDF5 and the receptor BMPR1B function, interacting synergistically and exacerbating BMP signaling impairment of the BMP/TGF-β chondrogenesis via SMAD-dependent pathway, impairing signaling, leading to an addition effect and consequently a phenotype expected to occur only in biallelic presentation.

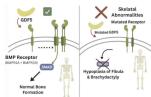


Figure 3, scheme of GDF5 and BMPR1B (preferencial receptor), interaction.

REFERENCES

- Lehmann K, Seenann P, Boergermann J, Morin G, Reff S, Knaus P, Mundles S. A novel R4860 mutation in BMPR18 resulting in either a brachydactyly type Claymphulangism-like phenotype or brachydactyly pack 2-6 up 14 med near 2003;11(10);873–80. doi:10.1038/gipt 3201087 Khan S, Bast S, Khan MA, Muhammad N, Ahmad W. Genetics of human isolated acomesometic dysplasia. Eur J Mad Genet. 2015;69(14):162-203. doi:10.1016/j.jmp.2016.00.2010.0016.001 Book G, A hypomorphic BMPR18 mutation causes du Pan acomesometic dysplasia. Orphanet J Rare Dis. 2015;1034. doi:10.1188/s1023-2016-2029-5
 Turgut GT, Kalelloglu IH, Karaman V, Sarac Syrrikoz T, Karaman B, Uyguner ZO, Kaleyo T. Fibidar Agenesia and Ball-kie Toes Mimching Prezable Polydactyly. Prevatal Presentation of Du Pan Syndrome. Mod Syndromol. 2023;14(2);132-157. doi:10.1196/000527965
 Syndrome. Mod Syndromol. 2023;14(2);132-157. doi:10.1196/000527965
 Superfamily of proteins and three-fingend exclosionain of their cellular receptors. Cell Mol Life Sci. 2011;88(6):1105-23. doi:10.1007/s00018-011-0028-4