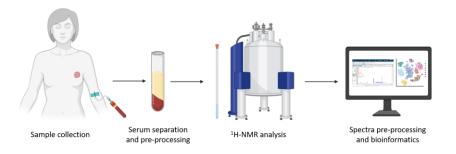


Identification of Metabolite Variations Among Luminal B Breast Cancer Using Serum NMR-Metabolomics

Ester Mazepa¹; Luiz Fernando Cardoso Garcia¹; Leociley Menezes²; Ana Carolina Demczuk¹; Regiane Stafim da Cunha¹; Priscila Ianzen dos Santos³; Luana Caroline de Oliveira³; Stephanie Rubiane Carvalhal³; Angelica Beate Winter Boldt³; Guilherme Lanzi Sassaki²; Enilze Maria de Souza Fonseca Ribeiro¹; Carolina Mathias^{1*}

1 Laboratório de Citogenética Humana e Oncogenética, Departamento de Genética (UFPR)
2 Centro de Ressonância Magnética Nuclear da UFPR (CRMN-UFPR)
3 Laboratório de Genética Molecular Humana, Departamento de Genética (UFPR)
* Corresponding author: carolina.mathias@ufpr.br

INTRODUCTION


Breast cancer is a heterogeneous disease with four major molecular subtypes: luminal A, luminal B, HER2+, and basallike. Luminal B, although hormone receptor-positive like luminal A, shows more aggressive behavior and lower response to hormonal therapy. This heterogeneity impacts treatment and clinical management, underscoring the need for better stratification strategies. NMR-based metabolomics is a valuable tool to detect metabolic alterations and potential biomarkers, which, in turn, may support luminal B stratification and improve diagnosis, prognosis, and personalized therapy.

AIMS

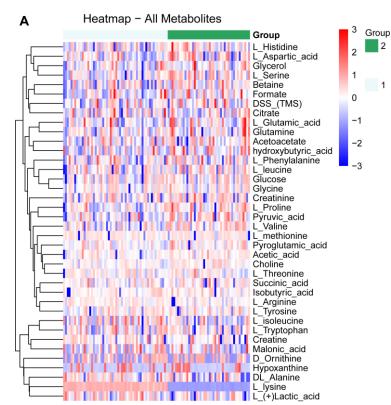
This study aimed to investigate the serum metabolome of luminal B breast cancer patients to find potential alterations on metabolite composition that allow its sub-stratification.

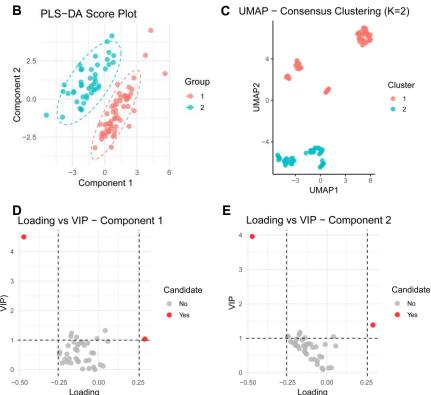
METHODS

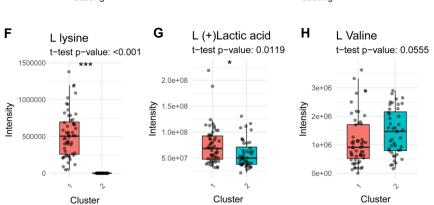
Serum samples were obtained from 103 luminal B breast cancer patients and stored at -80 °C. For metabolomics analysis, serum samples were treated with methanol and analyzed in a Bruker Ascend 600 MHz spectrometer (D_2O , 25 °C). Spectra were pre-processed using Topspin 4.4.1 software. Metabolite pre-identification and quantification were performed using COLMAR 1D with global spectral deconvolution. Statistical analyses were performed with RStudio Desktop (version 2025.05.0+496).

CONCLUSIONS

These findings suggest the presence of metabolically distinct subgroups within luminal B breast cancer and highlight the potential of NMR-based metabolomics for luminal B patient sub-stratification.


REFERENCES


Dai, X., Cheng, H., Bai, Z., Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping (2017), Journal of Cancer, doi: 10.7150/jca.18457.


Beckonert, O., Keun, H.C., Ebbels, T.M.D., Bundy, J., Holmes, E., Lindon, J.C., Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts (2007), Nature Protocols, doi:10.1038/nprot.2007.376

Li, D.W., Bruschweiler-Li, L., Hansen, A.L., Brüschweiler, R. DEEP Picker1D and Voigt Fitter1D: a versatile tool set for the automated quantitative spectral deconvolution of complex 1D-NMR spectra (2023), Magnetic Resonance, doi.org/10.5194/mr-4-19-2023.

RESULTS

Figures: A. Heat Map of metabolite levels across the analyzed samples. The color scale indicates relative differences between groups (x-axis: groups; y-axis: metabolites). **B.** PLS-DA (Partial Least Squares Discriminant Analysis) score plot (accuracy = 99.16%). **C.** Unsupervised UMAP (Uniform Manifold Approximation and Projection) analysis. **D, E.** Loading vs VIP (variable importance in projection) plots of component 1 (D) and 2 (E) derived from PLS-DA analysis, showing the contribution and importance of each metabolite in group discrimination. **F-H.** Boxplots of lysine (F), lactate (G) and valine (H) relative levels across experimental groups. Statistical significance was assessed using one-way ANOVA. Asterisks indicate significant differences.

