

BATROCFFALIA F FÍBULA FM SFRPFNTINA COMO ACHADOS INCOMUNS NA OSTEOGÊNESE IMPERFEITA TIPO I

Felício de Freitas Netto¹, Ruy Pires de Oliveira-Sobrinho¹, The Brazilian Rare Genomes Project Consortium² e Carlos Eduardo Steiner¹

¹ Universidade Estadual de Campinas (Unicamp), ² Hospital Israelita Albert Einstein (HIAE)

INTRODUÇÃO

A osteogênese imperfeita (OI) é um grupo heterogêneo de displasias esqueléticas hereditárias, caracterizadas por fragilidade óssea, baixa densidade mineral suscetibilidade a fraturas, com apresentação clínica variável.

OBJETIVO

Descrever uma série de casos de OI tipo I confirmados por sequenciamento completo do genoma (WGS), com destaque para um subtipo clínico incomum em uma família.

MÉTODOS

Estudo descritivo retrospectivo de seis pacientes atendidos em um serviço de referência em doenças raras. Dados clínicos, laboratoriais, radiológicos e genéticos foram analisados. O WGS foi realizado em plataforma Illumina, com análise bioinformática de acordo com diretrizes internacionais e a interpretação das variantes seguiu os critérios do ACMG.

RESULTADOS E DISCUSSÃO

Todos foram clinicamente compatíveis com OI tipo I devido a escleras azuladas e osteopenia, a maioria com número reduzido de fraturas. Quatro apresentavam baixa estatura, dois perda auditiva e um dentinogênese imperfeita. Em uma família, duas pacientes (mãe e filha) apresentaram fenótipo grave e atípico como detalhado nas Figuras 1 e 2). A análise genômica identificou, em todos os casos, variantes patogênicas ou provavelmente patogênicas em heterozigose no gene COL1A1 (Tabela 1).

Este estudo reforça variabilidade fenotípica da OI tipo I. Variantes missense que substituem resíduos de glicina na hélice tripla de colágeno, como Gly287Ser, tendem a impactar significativamente a estrutura do colágeno tipo I, podendo gerar fenótipos mais graves. A presença de fíbula em serpentina e batrocefalia sugere sobreposição fenotípica com outras displasias esqueléticas dominantes, como a síndrome de Hajdu-Cheney, reforcando a importância diagnóstico molecular diferencial em pacientes com apresentações incomuns.

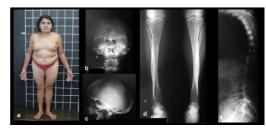


Fig. 1. Paciente 1 (mãe), 34 anos, com nanismo de tronco curto (a), batrocefalia (b, c), fíbulas em serpentinas (d) e vértebras bicôncavas/codfish (e).

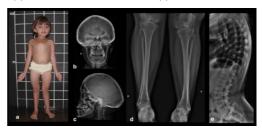


Fig. 2. Paciente 2 (filha), aos 8 anos, com nanismo de tronco curto (a); aos 18 anos. batrocefalia (b, c), fíbulas arqueadas (d) e vértebras bicôncavas/codfish (e).

Tabela 1. Achados clínicos e moleculares.

Achado								
		1	2	3	4		6	Frequência
Sexo		F	F	F	F		н	15(MF)
História familial			*					5/6 (83%)
Baira estatura		+ (-2.04ZS)	+ (-6.39 ZS)	-(-1.43 25)	+ (-3.5728)	- (-0.60 ZS)	+ (-2.18 25)	4/6 (60%)
Número de fraturas		5	4	5	>200	4	2	i=37
Deformidade dissea								1/6 (10%)
Esclera azulada						+		5/6 (83%)
Dentinogenesis imperfecta				1.0		7.6	- 1	1/6 (16%)
Perda auditiva								2/6 (33%)
Osteopenia/Osteoporosis				*				6/6 (100%)
Variante	códon	c.2450dup	c.859G+A	c.1243C>T	c.769G>A	c.2452-1G>A	c.432dup	
	proteina	Cly618Trpfs*3	Gly287Ser	Arg415Ter	Oly257Arg	0.7	Gly145Argfs*24	
	tipo	frameshift	missense	nonsense	missense	Intronic	frameshift	
	ClinVar ID	rs193922149	1972645340	1972648326	rs72645321	rs72651667	rs/72667016	
	classificação	P	LP	P	P	LP	P	

CONCLUSÃO

A descrição de sinais pouco usuais em pacientes com Ol tipo I destaca a importância da caracterização fenotípica detalhada aliada ao diagnóstico molecular. A análise genômica continua sendo uma ferramenta essencial para o diagnóstico preciso, manejo individualizado e aconselhamento genético em OI.

REFERÊNCIA

Rodriguez Celin M, Steiner RD, Basel D. COL1A1 and COL1A2-Related Osteogenesis Imperfecta. 2005 Jan 28 [Updated 2025 May 29].