

Síndrome de Shwachman-Diamond: Limitações do Sequenciamento do Exoma Completo para Identificação de Variantes no Gene SBDS

Lucas Galiza Cerdeira Gonzalez¹, Bianca Abdala¹, Daltro Castelar Júnior¹, Júlia Valeriano de Almeida¹, Maria Eduarda Gomes¹, Naiara Gomes¹, Paula Bergamo de Almeida Silva¹, Sandra Vitória Thuler Pimentel¹, Ana Laura da Costa Medeiros¹, Heloisa Griese Luciano dos Santos¹, Ruth Elisa Sued Paulino¹, Anneliese Barth¹, Patrícia Correia¹, Juan Clinton Llerena Jr¹, Sayonara Gonzalez¹.

1-INSTITUTO FERNANDES FIGUEIRA (IFF-FIOCRUZ)/SERVIÇO DE REFERÊNCIA PARA DOENÇAS RARAS - SRDR/IFF/FIOCRUZ

INTRODUÇÃO

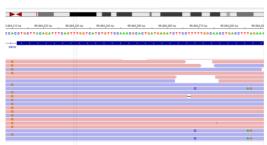
A síndrome de Shwachman-Diamond (OMIM#260400) (SSD) é uma condição de herança autossômica recessiva, caracterizada por síndrome disabsortiva, alterações esqueléticas e anormalidades hematológicas. 1.2 Variantes patogénicas no gene SBDS (SBDS ribosome maturation factor) são a principal causa genética associada à SSD. 2 osequenciamento do exoma completo por fragmentos curtos, é amplamente utilizado para a detecção de variantes no gene SBDS, mas pode apresentar limitações devido ao alto grau de homologia de sequência entre o gene SBDS e o seu pseudogene SBDSP1, aumentando a probabilidade de desallinhamento das leituras no processo de mapeamento.

OBJETIVO

No presente estudo, foi realizado o sequenciamento do exoma completo de um paciente com sintomas sugestivos de SSD, incluindo diarreia crônica e insuficiência pancreática exócrina, déficit de crescimento e suspeita de microcefalia primária, com o objetivo de identificar variantes causais.

METODOLOGIA

Após a obtenção do TCLE (5.079.483), o DNA genômico foi isolado a partir de sangue periférico e o sequenciamento do exoma completo foi realizado. A biblioteca genômica foi construída utilizando o *Illumina Exome V2.0* (200 ciclos) seguida do sequenciamento na plataforma *NovaSeq 6000* (Illumina). O processamento e a análise dos dados foram conduzidos no *webserver* Varstation e as variantes foram classificadas de acordo com as diretrizes do ACMG/ClinGen.


RESULTADOS E DISCUSSÃO

A priorização de variantes causais possibilitou a identificação de uma alteração patogênica de *splicing* (c.258+217-C) no gene SBDS (Figura 1), com frequência alética sugestiva de homozigose. Apesar de nenhuma outra variante ter sido chamada com base no *pipeline* de processamento de variantes, a análise manual do arquivo de alinhamento de sequências (formato BAM) no IGV revelou a presença de algumas leituras contendo as variantes c.183_184Ta>CT e c.201A>G (5 leituras de 106) (Figura 1), as quais foram descartadas pelo *software* por serem consideradas de baixa qualidade.

A coocorrência em heterozigose composta do alelo c.258+2T>C (Figura 2) com um alelo contendo as variantes c.183_184TA>CT e c.201A>G (Figura 2) foi previamente associada ao fenótipo de SSD.^{1,2} Relatos anteriores indicam que a presença simultânea dessas alterações em uma mesma leitura compromete o mapeamento correto ao locus do gene SBDS, resultando no alinhamento preferencial das leituras ao pseudogene SBDSP1. 1,2 Esse evento dificulta a determinação da zigosidade da variante c.258+2T>C e contribui para a subdetecção das c.201A>G.1,2 c.183_184TA>CT variantes е Assim. determinação precisa da zigosidade e da fase dessas variantes requer o uso de metodologias ortogonais, como o sequenciamento pelo método de Sanger. 1,2

CONCLUSÃO

Os achados aqui descritos evidenciam as limitações do sequenciamento de exoma por leitura curta na detecção de variantes patogênicas em genes com pseudogenes, como o gene SBDS. Tal fato aumenta o risco de resultados falsonegativos, indicando a necessidade de metodologias complementares, a fim de evitar erros diagnósticos e garantir um manejo clínico adequado.

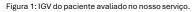


Figura 2: IGV do paciente da literatura.

REFERÊNCIAS

1-Yamada M, Uehara T, Suzuki H, et al. Shortfall of exome analysis for diagnosis of Shwachman Diamond syndrome: Mismapping due to the pseudogene SBDSP1. Am J Med Genet Part A. 2020;1–6. https://doi.org/10.1002/ajmg.a.61598

2-Lee H, Lee JA, Lee H, Lee JS, Ko JM, Kim MJ, Seong MW. Variant Allele Frequency of Pseudogene-Related Variants in Short-read Next-Generation Sequencing Data May Mislead Genetic Diagnosis: A Case of Shwachman-Diamond Syndrome. Ann Lab Med. 2023 Nov 1;43(6):638-641. doi: 10.3343/alm.2023.43.6.638. Epub 2023 Jun 30. PMID: 37387500; PMCID: PMC10345175.