

André Luís Ferreira*¹; Carolina de Souza Araujo¹ ; Fernanda Araujo Romera ¹; Guilherme Sotto Battiston de Souza¹; Kássia Braga Canzian²; Renato de Oliveira³; Reginaldo Raimundo Fujita'; Vítor Guo Chen⁴; Eduardo Perrone¹ . É; Débora Gusmão Melo¹; Cecília Micheletti⁵; Consórcio Projeto Genomas Raros⁶

1 - Disciplina de Genética, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), Brasil; 2 - Setor de Neurologia Infanti/Neuropediatria, Departamento de Neurologia, EPM, Unifesp, Brasil; 3 - Disciplina de Cirurgia Torácica, Departamento de Cirurgia, EPM, Unifesp, Brasil; 4 - Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, EPM, Unifesp, Brasil; 5 - Disciplina de Pediatria Geral e Comunitária do Departamento de Pediatria, EPM, Unifesp, Brasil; 6 - Hospital Israelita Albert Einstein, São Paulo, Brasil:

Palavras-Chave: Doença Rara; Genética Médica; Diagnóstico; Sequenciamento Completo do Genoma.

*alferreira@unifesp.br

Introdução

As Hipoplasias Pontocerebelares (PCH) são doenças neurodegenerativas raras, caracterizadas por hipoplasia da ponte e do cerebelo, associadas, em graus variados, a atrofias supratentoriais. A PCH tipo 16 (OMIM #619527) é uma síndrome grave do neurodesenvolvimento, de herança autossômica recessiva, causada por variantes patogênicas no gene MINPP1 (10q23.2), que codifica a enzima MINPP1, responsável pela degradação de polifosfatos de inositol (IPs). A deficiência dessa enzima leva ao acúmulo de IP6, associado a comprometimento na diferenciação e sobrevivência neuronal.

Relato do Caso

Paciente do sexo feminino, filha de pais não consanguíneos oriundos de cidade de 17 mil habitantes, sem histórico familiar relevante. Mãe, G2P1A1, gestação sem intercorrências.

Paciente nasceu a termo, de parto vaginal, pesando 2435g (Z-1,9), com comprimento de 44cm (Z-2,8) e perímetro cefálico de 30cm (Z-3,4). Evoluiu com desconforto respiratório persistente e estridor.

No exame morfológico apresenta microcefalia, micrognatia, orelhas de implantação baixa e mamilos invertidos. Nasofibrolaringoscopia evidenciou laringomalácia tipo Olney I, tratada com supraglotoplastia, com melhora parcial, mas seguida de reagudização respiratória. Broncoscopia identificou anéis traqueais completos no terço distal até a carina, malformação congênita rara.

Posteriormente apresentou nistagmo e movimentos paroxísticos que foram interpretados como crises epilépticas, sendo iniciado o uso de anticonvulsivante. A investigação complementar revelou cariótipo sem alterações; ressonância magnética de encéfalo (Fig. 1) com hipoplasia pontocerebelar, disgenesia do corpo caloso e atraso da mielinização. O sequenciamento completo do genoma identificou variante provavelmente patogênica em homozigose no gene MINPP1 (NM_004897.5), c.204del; p.(Trp68Cysfs*35).

Discussão

O quadro clínico é compatível com PCH16, reforçado pela variante provavelmente patogênica identificada no sequenciamento completo do genoma. No fenótipo, destaca-se a presença de anéis traqueais completos, achado não previamente descrito na PCH16, que pode fazer parte de um espectro clínico associado à disrupção das vias de sinalização WNT e/ou Hedgehog. Os IPs constituem uma família ubíqua de mensageiros moleculares importantes na fisiologia celular, tendo sido o IP5 apontado como um mensageiro secundário relevante na via WNT. Há um caso de PCH16 com laringomalácia descrito previamente na literatura, corroborando essa hipótese.

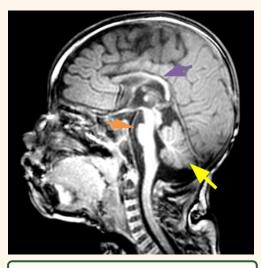


Figura 1: RM do cérebro ponderada em T1 sagital mostrando hipoplasia cerebelar (seta amarela) e da ponte (seta laranja), e redução do corpo caloso (seta roxa).

Conclusão

Este relato de caso traz uma contribuição ao estudo da PCH16, uma síndrome ultrarrara de alta morbidade e mortalidade. Ao documentar a presença de malformações traqueais, o estudo não só amplia o espectro fenotípico conhecido da condição, mas também fomenta um maior entendimento da patologia, o que pode levar a avanços no manejo e na qualidade de vida dos pacientes.

Agradecimentos

Essa pesquisa foi possível por meio do acesso aos dados e descobertas gerados pelo Projeto Genomas Raros; http://www.genomasraros.com.

Referências

- APPELHOF, Bart et al. Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1.
 European Journal of Human Genetics, v. 29, n. 3, p. 411-421, 2021.
- GAU, Yuan; WANG, Hsien-yu. Inositol pentakisphosphate mediates Wnt/β-catenin signaling. Journal of Biological Chemistry, v. 282, n. 36, p. 26490-26502, 2007.
- KIM, Seyun et al. The inositol phosphate signalling network in physiology and disease.
 Trends in Biochemical Sciences, 2024.
- SINNER, Debora I. et al. Complete tracheal ring deformity. A translational genomics approach to pathogenesis. American Journal of Respiratory and Critical Care Medicine, v. 200, n. 10, p. 1267-1281, 2019.
- UCUNCU, Ekin et al. MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nature communications, v. 11, n. 1, p. 6087, 2020.