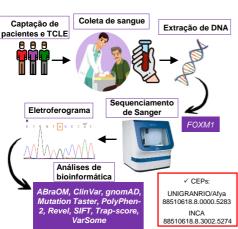


Influência de alterações no gene FOXM1 para o desenvolvimento do câncer de próstata em uma coorte do Rio de Janeiro

Autores: Alessandra Lima Dias¹, Yasmin dos Santos Silva Rodrigues da Costa¹, Danielle Dutra Voigt¹, Ritiele Bastos de Souza², Kaio Cezar Salumi⁴, Enrique Antonio Covarrubias Loayza³, Vivianne Galante Ramos¹, Pedro Hernán Cabello Acero², Tamara Silva¹, Ana Carolina Proença da Fonseca 1,2,5

Filiação: 1 Universidade do Grande Rio/AFYA, Rio de Janeiro, Brasil; 2 Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil; ³Departamento de Saúde – Policlínica de Duque de Caxias, Universidade do Grande Rio/AFYA, Rio de Janeiro, Brasil; ⁴Hospital Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; ⁵Universidade Federal do Estado do Rio do Janeiro, Rio de Janeiro, Brasil.

INTRODUÇÃO


O Câncer de Próstata (CaP) se caracteriza pelo crescimento desordenado de células prostáticas, podendo invadir outros tecidos e órgãos. Mundialmente, o CaP é o segundo de maior incidência e o quarto que mais leva a óbito indivíduos do sexo masculino. Possui etiologia crônica e multifatorial. Em relação aos fatores genéticos, alterações em genes associados ao seu desenvolvimento tem sido investigadas quanto ao seu potencial de influência na neoplasia. O gene FOXM1 é um regulador que desempenha papel importante em diversos processos biológicos e tem sido relacionado ao CaP.

OBJETIVO

O presente estudo objetivou investigar o efeito de alterações no gene FOXM1, no risco para o CaP. Além disso, foi realizada uma caracterização do perfil clínico, bioquímico e sociodemográfico.

METODOLOGIA

RESULTADOS

Análise comparativa das variáveis entre os grupos amostrais

Bioquímicas PSA total (p<0,001) PSA livre (p<0,001) Plaquetas (p=0,027) Hemácias (p=0,019) Hematócrito (p=0.003) Hemoglobina (p=0,006)

Sociodemográficos Idade (p<0,001) Etnia/cor da pele (p=0,032)

Altura (p=0,006) Clínicas/sintomatológicas

> Todas analisadas (p<0.001)

Análise in sílico das variantes sinônimas identificadas no nene FOYM1

gene i Oxini				
Ferramentas de bioinformática	rs2072360	rs11548397		
MAF	0,10	0,02		
Trap-score	0,043	0,1		
VarSome (ACMG)	Benigno	Benigno		

Análise in sílico das variantes não sinônimas identificadas

no gene FOXM1				
Ferramentas de bioinformática	rs116425032	rs28990715	rs28919868	
MAF	0,01	<0,01	0,03	
MAF gnomAD (%) - exoma	0,0006	0,0190	0,0065	
MAF gnomAD (%) - genoma	0,0061	0,0158	0,0591	
MAF ABraOM	0,0059	0,0183	0,0380	
ClinVar	Benigno	Não reportado	Não reportado	
VarSome (ACMG)	Benigno	Benigno	Benigno	
PolyPhen - 2	Provavelmente prejudicial	Possivelmente prejudicial	Benigno	
SIFT	Deletério	Deletério	Tolerado	
Mutation Taster	Causador de doença	Causador de doença	Polimorfismo	
Revel	Suporte patogênico	Suporte benigno	Benigno moderado	

Alinhamento entre espécies das alterações não

PLEASLMSS PLAASLMSS PLAASLMSS EASL no sapiens (Muta rs28990715 Macaca mulatta p.(Ala402Glu) Felis catus Mus musculus PAAGVQFTPSSS QH PTSSPVSLSTPPQTQNS LPATE PYAYEAECL Takifugu rubrip

DISCUSSÃO E CONCLUSÃO

- As alterações não sinônimas rs116425032 (p.(Ser180Arg)) e (p.(Ala402Glu)) rs28990715 mostraram um potencial patogênico
- > As mesmas alterações mostraram seus aminoácidos selvagens conservados;
- ≻Esta pesquisa é a primeira a rastrear e investigar a patogenicidade destas alterações em indivíduos com CaP.

Acreditamos que este trabalho possa acrescentar na busca por uma melhor elucidação dos mecanismos genéticos de desenvolvimento do CaP, contribuindo para o aprimoramento de estratégias de combate à doença, através da obtenção de biomarcadores. reduzindo, assim, seus impactos para população.

