

CBGM

MODELING AND MOLECULAR DYNAMICS OF GENETIC VARIANTS OF THE HUMAN NEK1 PROTEIN IN AMYOTROPHIC LATERAL SCLEROSIS

Diolina Gonçalves da Silva¹, Nayane Soares de Lima¹ Rodrigo da Silva Santos^{1,2}, Angela Adamski da Silva Reis^{1,2}

¹Research Center in Neurogenetics, NeuroGene, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Avenida Esperança, Campus Samambaia (Campus II). CEP: 74690-900, Goiânia, GO. Brazil.

²Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Avenida Esperança, Campus Samambaia (Campus II), CEP: 74690-900, Goiânia, GO, Brazil.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. NEK1 stands out among ALS-associated genes due to its roles in cell cycle control, cilia assembly, and apoptosis. To evaluate, through *in silico* analysis, the effects of NEK1 variants on the structure and function of its encoded protein.

METHODOLOGY

RESULTS

Variant ID	PolyPhen-2	SIFT	PANTHER
rs756261702	Probably damage	Deleterious	Probably damage
rs1309738215	Probably damage	Deleterious	Probably damage
rs772747361	Probably damage	Deleterious	Probably damage
rs200161705	Probably damage	Deleterious	Probably damage

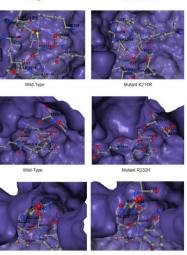
Table 1. Functional impact prediction, all platforms indicated that the variants have deleterious effects on the protein.

	LEKRI													
_	\sim					_	_	_		_	_	_		_
			KEYNN	KSDIN	ALGEV	LYELD	TLERK		MERLY	LKIIS	GSFPP	VELHY	SYDLE	SLVS
_	^	~		~~	<u>~~</u>	~~	<u> </u>	_	√~	~~~			~~	~~
	SVNSI													

Relative Surface Accessibility: * Red is exposed and blue is buried, thresholded at 25% Secondary Structure: * Melki, * strand, — Coil. Disorder: * Thickness of line equals probability of disordered residue.

Figure 1. Structural impact prediction. NetSurP indicated that the K214R, R232 and R261H variants were classified as exposed and highly conserved, and the C113R variant was classified as buried.

NetSurP and Consurf classified the variants K214R, R232H, and R261H as exposed and highly conserved, suggesting critical functional roles. Adittionally, model quality analysis descreibed that structures containing the kinase domain had better stereochemical quality. SCooP results indicated that the variants rendered the protein thermolabile, affecting its functional temperature range. On the hand, molecular docking revealed reduced ATP binding affinity in the C113R and K214R variants, while molecular dynamics simulations showed that all isoforms exhibited decreased stability and flexibility.


SUPPORT

Mutant C113R

Figure 2. Interactions predicted DynaMut. According the DynaMut analysis, all variants caused destabilizing on proteins. In addition, the exchange of amino acids altered the dynamics of the interactions. modifying the pattern of interactions between the wildtype and mutant forms of the protein.

Hydrogen bonds are

represented by red lines and Van der Waals interactions

Waals interactions are represented by blue lines.

Wild-Type Mulant R261H

DISCUSSION

The consistent classification of NEK1 variants as deleterious by multiple predictive tools underscores their potential pathogenic role in ALS. The identification of K214R, R232H, and R261H as exposed and highly conserved residues by NetSurP and ConSurf highlights their likely importance in maintaining NEK1, structural and functional integrity. Structural analyses further support this, with DynaMut revealing destabilizing effects and altered intramolecular interactions, which may impair protein folding or enzymatic activity. The reduced thermostability observed suggests that these variants compromise the protein's resilience under physiological conditions. Additionally, molecular docking and dynamics simulations demonstrated impaired ATP binding and decreased structural stability and flexibility, respectively.

CONCLUSION

Collectively, these findings suggest that NEK1 variants may disrupt proteostasis, a key factor in ALS pathogenesis and other neurodegenerative disorders.

REFERENCES

